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Abstract
A non-Boolean extension of the classical probability model is proposed.
The non-Boolean probabilities reproduce typical quantum phenomena. The
proposed model is more general and more abstract, but easier to interpret,
than the quantum mechanical Hilbert space formalism and exhibits a particular
phenomenon (state-independent conditional probabilities) which may provide
new opportunities for an understanding of the quantum measurement process.
Examples of the proposed model are provided, using Jordan operator algebras.

PACS number: 03.65.Ta

1. Introduction

The statistical interpretation is a later add-on to quantum mechanics and is neither obvious
in the quantum mechanical Hilbert space formalism nor in line with Kolmogorov’s measure-
theoretical axioms of probability theory. With Kolmogorov’s axioms, it is assumed that the
events form a Boolean lattice while von Neumann [2] already pointed out that this does not hold
for the quantum-mechanical events and, moreover, Kolmogorov’s axioms imply the so-called
Bell inequalities [1] which do not hold in quantum mechanics and were disproved by several
physical experiments.

This paper presents a new axiomatic model using probabilistic interpretations from the very
beginning, covering quantum mechanics (with a certain exception) as well as Kolmogorov’s
model and revealing a new phenomenon unknown in both these existing theories: non-
trivial state-independent conditional probabilities. This phenomenon is called statistical
predictability. In Kolmogorov’s model, the conditional probability of an eventF under another
event E becomes independent of the underlying probability measure (state) only in the two
trivial cases where either E implies F or E implies the negation of F .

The incompatibility of events, well known from quantum mechanics (non-commuting
projections), is defined in a very basic probabilistic way. In Kolmogorov’s model, all events
are mutually compatible, and the new axiomatic model, indeed, reduces to Kolmogorov’s
model if it is assumed that all events are mutually compatible or if it is assumed that the events
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form a Boolean lattice. The new model can therefore be considered a non-Boolean extension
of Kolmogorov’s probability theory.

The wave-like interference phenomena of quantum physics are a further typical feature
of non-Boolean probabilities.

The non-trivial state-independent conditional probabilities may provide opportunities for
a new understanding of quantum measurement. Different aspects and views of the quantum
measurement problem are presented in [5] and [17].

2. Orthospaces and states

With Kolmogorov’s model, the events form a σ -algebra which is a special type of Boolean
lattice where countably infinite sums exist. Since finite additivity is sufficient for the purpose of
the present paper, an algebraic structure generalizing a Boolean lattice and rendering possible
the consideration of states (finitely additive probability measures) on it is needed. A set E is
therefore considered with distinguished elements 0 and 1I, a relation ⊥ and a partial binary
operation + such that for D,E,F ∈ E:

(OS1) E ⊥ F ⇒ F ⊥ E

(OS2) E + F is defined for E ⊥ F , and E + F = F + E

(OS3) D ⊥ E, D ⊥ F , E ⊥ F ⇒ D ⊥ E +F , F ⊥ D +E and D + (E +F) = (D +E)+F

(OS4) 0 ⊥ E and E + 0 = E for all E ∈ E

(OS5) For every E ∈ E there exists a unique E′ ∈ E such that E ⊥ E′ and E + E′ = 1I
(OS6) E ⊥ F ′ ⇒ there exists a D ∈ E such that E ⊥ D and E + D = F .

A set E with the above operations satisfying (OS1)–(OS6) is called an orthospace. We say
‘E and F are orthogonal’ for E ⊥ F , and E′ is called the complement of E. Then 0′ = 1I, and
E′′ = E for each E in an orthospace E, which immediately follows from (OS2, OS4, OS5).

A further relation ≺ is defined on an orthospace E via E ≺ F :⇔ E ⊥ F ′(E, F ∈ E).
Then E ≺ F if and only if E contains an element D such that D ⊥ E and F = E +D, and we
have 0 ≺ E ≺ 1I for allE ∈ E. The relation ≺ is reflexive by (OS4) or (OS5), but is not an order
relation since it is neither anti-symmetric nor transitive in general. This is a major difference
to the structures usually considered as quantum logics [2, 14, 16] where an order relation is
assumed from the very beginning. An orthospace is a rather weak structure that, without the
further postulates of section 3 concerning the states on it, would remain meaningless.

A state on an orthospace E is a map µ : E → [0, 1] such that µ(1I) = 1 and
µ(E + F) = µ(E) + µ(F) for all orthogonal pairs E,F ∈ E. Then µ(0) = 0, and µ

is additive for each finite family of pairwise orthogonal elements in E. (OS6) ensures that
µ(E) � µ(F) for E ≺ F .

The elements E ∈ E are interpreted as events and will be called so in the following.
Orthogonality means that the events exclude each other. The (only partially defined)
operation + is interpreted as the or connection of mutually exclusive events, E′ is the negation
of E. For a state µ, the interpretation of the real number µ(E) is that of the probability of the
event E in the state µ.

3. Unique conditional probabilities

The concept of conditional probabilities well known from Kolmogorov’s model is now
extended to the very general situation of orthospaces and states.
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Definition 3.1. Let µ be a state on an orthospace E and E ∈ E with µ(E) > 0. If ν is another
state such that ν(F ) = µ(F)/µ(E) holds for all F ∈ E with F ≺ E, then ν is called a
conditional probability of µ under E.

Essential shortcomings of this conditional probability are that such a state ν may not exist
at all and that, if such a state exists, there may be many others. The requirement that unique
conditional probabilities must exist guides us to the following definition of UCP spaces.

Definition 3.2. A UCP space is an orthospace E satisfying the following two axioms:

(UC1) If E,F ∈ E and E 	= F , then there is a state µ with µ(E) 	= µ(F).
(UC2) For each state µ and E ∈ E with µ(E) > 0, there exists one and only one conditional

probability µE of µ under E.

µE(F ) is the probability of the event F in the state µ after the event E has been observed.
Using the same terminology as in mathematical probability theory, we will also write µ(F |E)

for µE(F ) in the following. If µ(E) = 1, then µE = µ and µ(F |E) = µ(F) for all F ∈ E.
After having observed a sequence of n events E1, E2, . . . , En(n > 1), the probability

of a further event F in the state µ is inductively defined via µE1,E2,...,En(F ) :=
(µE1,E2,...,En−1)En(F ) if µE1,E2,...,En−1(En) > 0. We also write µ(F |E1, E2, . . . , En) for
µE1,E2,...,En(F ).

There is a state µ with µ(E) = 1 for each element E 	= 0 in a UCP space, since from
(UC1) we get a state ν with ν(E) > 0, and then choose µ = νE .

(UC1) implies a few further algebraic properties of the orthospace E in addition to (OS1)–
(OS6). If E ⊥ F ′, there exists a D ∈ E such that E ⊥ D and E + D = F , but (OS6) does
not require that D is uniquely determined. The uniqueness of D now follows from (UC1):
E + D1 = F = E + D2, then µ(E) + µ(D1) = µ(F) = µ(E) + µ(D2) for all states µ, hence
µ(D1) = µ(D2) for all states µ and D1 = D2.

Moreover, if E ≺ F and F ≺ E for E,F ∈ E, then E = F , i.e. the relation ≺
is anti-symmetric: if F = E + D1 and E = F + D2, then µ(F) = µ(E) + µ(D1) =
µ(F) + µ(D2) + µ(D1). Therefore µ(D1) = µ(D2) = 0 for all states µ, and D1 = D2 = 0
by (UC1). Note that the relation ≺ need not be transitive so far.

Furthermore E ⊥ E ⇔ E ⊥ 1I ⇔ E = 0. (If E ⊥ E, then E ⊥ E + E′ = 1I by (OS3,
OS5). If E ⊥ 1I, then E ⊥ 0′ and E′ ⊥ 0, i.e. E ≺ 0 and 0 ≺ E, hence E = 0.) The following
lemma will be needed later.

Lemma 3.3. Let E be an orthospace such that the only elements which are orthogonal to any
D 	= 0 are 0 and D′. Then either E has one of the two shapes {0, 1I} and {0, 1I, E,E′}, or E is
not a UCP space.

Proof. We assume that E is a UCP space containing an element E with 0 	= E 	= 1I and at
least one element F different from 0, 1I, E,E′. Then there is a state µ with µ(F) > 0. If µF

is the conditional probability of µ under F ,

ν(D) :=
{
µF (D) for D 	= E,E′

1 − µF (D) for D = E,E′

defines a state ν, since we have to observe only ν(D) + ν(D′) = 1 for all events D. Thus, ν is
a conditional probability of µ under F and differs from µF unless µF (E) = 1/2; in this case
define ν(E) = 1 and ν(E′) = 0. �
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4. Statistical predictability

An atom in an orthospace E is an element 0 	= D ∈ E such that E � F ≺ D implies that either
F = 0 or F = D. If D is an atom in the UCP space E, then there is a unique state ρD such
that ρD(D) = 1; ρD is the conditional probability of any µ with µ(D) > 0 under D, which
does not depend on µ in this case:

ρD(F ) = µD(F) = µ(F |D) for all states µ with µ(D) > 0.

Here, we encounter a very interesting phenomenon: a conditional probability that does not
depend on the state. This phenomenon is named statistical predictability in the next definition.

Definition 4.1. An event E in a UCP space E is called statistically predictable under the event
sequence 0 	= F1, . . . , Fn ∈ E(n � 1) if µ1(E|F1, . . . , Fn) = µ2(E|F1, . . . , Fn) for all
states µ1, µ2 with µj(F1) 	= 0 	= µj(Fk+1|F1, . . . , Fk) for k = 1, . . . , n − 1(j = 1, 2). In
this case, the state-independent conditional probability of E under F1, . . . , Fn is denoted by
P(E|F1, . . . , Fn).

Because of its state independence, the probability P(E|F1, . . . , Fn) is completely
determined by the algebraic structure of the orthospace E and thus seems to be less a stochastic
than a logical phenomenon. With classical probabilities, the state (which is the probability
measure in this case) represents a lack of knowledge about the system under consideration,
and with complete knowledge all probabilities would reduce to 1 and 0. This is not possible
with P(E|F1, . . . , Fn) since it is state-independent already.

If E is statistically predictable under Fn, then E is statistically predictable under the
event sequence F1, . . . , Fn with P(E|F1, . . . , Fn) = P(E|Fn), i.e. any previous observations
F1, . . . , Fn−1 can be ignored in this case and particularly if Fn is an atom. (Use the inductive
definition of the conditional probability of E under F1, . . . , Fn in a state µ.)

Moreover, P(Fn|F1, . . . , Fn) = 1 always holds, but P(Fk|F1, . . . , Fn) need not equal 1
for k < n (e.g. if Fk is statistically predictable under Fn with P(Fk|Fn) 	= 1; see section 7).
This means that, if the same property is observed a second time directly after the first time,
the second observation will always provide the same result as the first one. However, if the
second observation is not repeated directly after the first one, i.e. if another property has been
tested in between, there is a chance that the second observation provides another result than
the first one. The information gained from the first observation seems to have been destroyed
by testing the other property.

If Fk is an atom (for a k with 1 � k � n), we get

P(E|F1, . . . , Fn) = ρFk
(E|Fk+1, . . . , Fn).

This means that, after the observation of an event which is an atom, all previous observations
become meaningless for predictions concerning future observations. Nevertheless, these
predictions do not become deterministic as they would after the observation of an atom in
Kolmogorov’s classical model (in this case, an atom is a set containing one single point).

A state that provides only the probabilities 0 and 1 (µ(E) ∈ {0, 1} for all events E) is
called dispersion-free.

Lemma 4.2. If a UCP space E contains two elements E,F such that E is statistically
predictable under F with 0 < P(E|F) < 1, then µ(F) = 0 for all dispersion-free states
µ on E.

Proof. We assume µ(F) = 1. Then µ(E) = µ(E|F) = P(E|F) and µ is not dispersion-
free. �
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Lemma 4.2 excludes that the non-trivial cases of the statistical predictability can be
modelled by so-called hidden variable theories. Despite its simplicity, it can be considered a
very general version of a Kochen–Specker [11] type theorem valid not only for the quantum
mechanical standard model but for all UCP spaces. We will later see how the quantum
mechanical standard model fits into the UCP space model and that non-trivial cases of the
statistical predictability do exist.

5. Compatibility and Boolean lattices

Every Boolean lattice (= Boolean algebra) becomes a UCP space by defining E ⊥ F :⇔
E ∧ F = φ and E + F := E ∨ F for E ⊥ F . Then

µ(E|F) = µ(E ∧ F)

µ(F )

for a state µ and an event F with µ(F) > 0. This coincides with the classical definition of a
conditional probability. The following classical formula then holds for 0 < µ(F) < 1:

µ(E) = µ(E|F)µ(F ) + µ(E|F ′)µ(F ′).

An event E is statistically predictable under an event F if and only if either F � E or
F � E′. P(E|F) = 1 if F � E and P(E|F) = 0 if F � E′. This means that non-trivial cases
of the statistical predictability do not occur within the Boolean lattices. The above classical
formula motivates the following definition of compatibility.

Definition 5.1. A pair of events E,F in a UCP space E is called compatible if

µ(E) = µ(E|F)µ(F ) + µ(E|F ′)µ(F ′) for all states µ with 0 < µ(F) < 1

and

µ(F) = µ(F |E)µ(E) + µ(F |E′)µ(E′) for all states µ with 0 < µ(E) < 1.

Obviously, the events E and F are compatible if and only if E and F ′ are compatible.
Moreover, E and F are compatible if one of the relations E ⊥ F or E ≺ F holds.

Definition 5.1 provides a purely probabilistic concept of compatibility. Before studying
its relation to the well known quantum mechanical concept of compatibility, we shall first show
that it characterizes the Boolean cases among the UCP spaces in a certain sense. Of course, in
a Boolean lattice, all events are mutually compatible.

Theorem 5.2. If all events in a UCP space E are mutually compatible, then there is an injective
homomorphism of the orthospace E in a Boolean lattice.

Proof. Let B be the space of all real-valued finitely additive functions on the UCP space E.
The set � that consists of the states on E is a convex and compact set in B equipped with the
product topology. From the Krein–Milman theorem we then get

� = conv ext(�)

i.e. � is the closed convex hull of the set of its extreme points ext(�).
We now show that the extreme states are dispersion-free. Assume that µ ∈ ext(�) with

0 < µ(E) < 1 for some event E. Then, due to the compatibility

µ(F) = µ(E)µ(F |E) + (1 − µ(E))µ(F |E′) for all events F

which contradicts µ ∈ ext(�).
If E and F are events such that µ(E) = µ(F) for all µ ∈ ext(�), then µ(E) = µ(F)

for all µ ∈ � and E = F by (UC1). Now let � be the set of all dispersion-free states and
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represent an event E as the set {µ ∈ �|µ(E) = 1} in the Boolean lattice formed by the power
set of �. �
In a Boolean lattice, we have

µ(E|F1, . . . , Fn) = µ(E ∧ F1 ∧ · · · ∧ Fn)

µ(F1 ∧ · · · ∧ Fn)
= µ(E|F1 ∧ · · · ∧ Fn)

which does not depend on the order of the events F1, . . . , Fn. Any permutation of them
provides the same conditional probability, and it does not play any role which one among
them is observed first and which one later. This does not hold in the general case. For
instance, consider two atoms F1, F2 with µ(F1), µ(F2), P(F1|F2), P(F2|F1) 	= 0. Then
µ(E|F1, F2) = P(E|F2) and µ(E|F2, F1) = P(E|F1). We shall later see how examples with
P(E|F2) 	= P(E|F1) can be found.

In Boolean lattices, the observation of the event series F1, . . . , Fn is identical with the
observation of the single event F1 ∧ · · · ∧ Fn. However, in the general case, the logical ‘and’
operation ∧ is not available for incompatible events and observing an event F1 first and an
event F2 second becomes different from observing F2 first and F1 second. Timely order seems
to have more significance then than in the Boolean case.

6. Jordan operator algebras

We shall now study a class of UCP spaces that includes the quantum-mechanical model, but
also provides examples of UCP spaces that are covered neither by the quantum-mechanical
nor by Kolmogorov’s model. A UCP space of this class consists of the idempotent elements
(projections) in a Jordan algebra.

A Jordan algebra [10] is a linear space A equipped with a (non-associative) product ◦
satisfying

X ◦ Y = Y ◦ X and X ◦ (Y ◦ X2) = (X ◦ Y ) ◦ X2

for all X, Y ∈ A. In the present paper, only Jordan algebras over the field of real numbers are
considered. As usual, {X, Y,Z} denotes the triple product

{X, Y,Z} := X ◦ (Y ◦ Z) − Y ◦ (Z ◦ X) + Z ◦ (X ◦ Y )

of the three elements X, Y,Z in A. The following identities hold for elements X, Y,Z in any
real Jordan algebra:

{{X, Y,X}, Z, {X, Y,X}} = {X, {Y, {X,Z,X}, Y }, X}
and

{X, Y,X}2 = {X, {Y,X2, Y }, X}.
An element E ∈ A with E2 = E is called idempotent. If A contains a (multiplicative) unit

1I, the system J(A) of all idempotent elements in A forms an orthospace with E′ := 1I − E

and E ⊥ F :⇔ E ◦ F = 0.
A JB algebra [10] is a real Jordan algebra A that is a Banach space with a norm satisfying

‖X ◦ Y‖ � ‖X‖‖Y‖ ‖X2‖ = ‖X‖2 and ‖X2‖ � ‖X2 + Y 2‖
for all X, Y ∈ A. The subset A+ := {X2|X ∈ A} of a JB algebra A is a closed convex cone, and
a partial ordering is defined via X � Y ⇔ Y − X ∈ A+.

For idempotent elements E and F , E � F is equivalent to E ◦ F = E. With
E ⊥ F :⇔ E ◦ F = 0, the relation ≺ then coincides with � and becomes a partial ordering
on J(A).
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Any JB algebra which is the dual of a Banach space is called a JBW algebra [10]. Any JBW
algebra has a unit denoted by 1I. The system J(A) of all idempotent elements in a JBW algebra
A forms a complete orthomodular [14,16] lattice and A is the norm-closed linear hull of E. For
E ∈ J(A), {E, A, E} := {{E,X,E}|X ∈ A} is a subalgebra of A and is a JBW algebra with E

being the unit element. The idempotent elements in {E, A, E} coincide with the idempotent
elements in A below E and generate {E, A, E} as their norm-closed linear hull; {E,F,E} lies
in the norm-closed convex hull of {D ∈ E|D � E} as well as in A+, and {E,F,E} = 0 if and
only if E ◦ F = 0 (E, F ∈ J(A)).

A linear functional ϕ : A → R is called positive if ϕ(X2) � 0 for all X ∈ A. A positive
linear functional ϕ is bounded with ‖ϕ‖ = ϕ(1I). For each 0 	= X ∈ A there exists a positive
linear functional ϕ with ϕ(X) 	= 0. The restriction of a positive linear functional ϕ with
ϕ(1I) = 1 to J(A) provides a state on J(A).

Theorem 6.1. Let A be a JBW algebra. The system J(A) of idempotent elements in A is a UCP
space if and only if A does not contain any type I2 direct summand [10].

Proof. If A contains a type I2 direct summand, it follows from lemma 3.3 that J(A) is not a
UCP space.

We now assume that A is a JBW algebra without any type I2 direct summand.
Then each state µ on J(A) has a unique extension µ̂ to a positive linear functional on
A [3, 4, 6, 7, 9, 12, 18, 19]. This follows from results by Bunce and Wright [3, 4] that finally
provided a solution of the so-called Mackey problem for the JBW case, after it had been solved
for the W ∗ case by Christensen [6] and Yeadon [18, 19], and after the early pioneering work
by Gleason [9]. Note that these results do not hold in the type I2 case.

Now let µ be any state on J(A) with µ(E) > 0 for some E ∈ J(A). We assume that a
conditional probabilityµE exists. Let µ̂ and µ̂E be the extensions to positive linear functionals.
Then for F ∈ J(A)

F = {E,F,E} + 2E′ ◦ (E ◦ F) + E′ ◦ F and µE(F ) = µ̂E({E,F,E})
since µ̂E(E

′) = 0 and the Cauchy–Schwarz inequality imply that µ̂E(E
′ ◦ (E ◦ F)) = 0 and

µ̂E(E
′ ◦ F) = 0. Now {E, A, E} is generated by the idempotents below E and therefore

µE(F ) = 1

µ(E)
µ̂({E,F,E}). (∗)

If a conditional probabilityµE exists, it must have this shape. So the uniqueness is proved.
Since, on the other hand, {E,F,E} � 0 for idempotents E,F in any JB algebra, the above
expression defines a conditional probability, and the existence of the conditional probability
is proved as well. �

The equation (∗) in the above proof gives us the shape of the conditional probabilities and
implies that, in a JBW algebra A, an event F ∈ J(A) is statistically predictable under an event
E ∈ J(A) with P(F |E) = s if and only if the equation {E,F,E} = sE holds in A. We have
P(F |E) = 1 if and only if E � F , and P(F |E) = 0 if and only if E � F ′. This follows,
since {E,F,E} = E implies E � F . Furthermore

P(F |E1, . . . , En) = s

becomes equivalent to

{E1, {E2, {. . . , {En−1, {En, F,En}, En−1}, . . .}, E2}, E1}
= s{E1, {E2, {. . . , {En−1, En,En−1}, . . .}, E2}, E1}.
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We thus get purely algebraic expressions of the state-independent conditional probabilities. If
E and F are atoms in a JBW algebra, then P(E|F) = P(F |E), since {E,F,E} = sE and
{F,E, F } = tF imply

s2E = {E,F,E}2 = {E, {F,E, F }, E} = t{E,F,E} = stE

and then s = t or s = 0. If s = 0, {E,F,E} = 0; hence E ◦ F = 0 and {F,E, F } = 0, i.e.
t = 0.

Theorem 6.2. If E and F are compatible events in a JBW algebra without type I2 part such
that E is statistically predictable under F , then either F � E and P(E|F) = 1 or F � E′

and P(E|F) = 0.

Proof. Using (∗), the compatibility implies E = {F,E, F } + {F ′, E, F ′} and F =
{E,F,E} + {E′, F,E′}. From {F ′, E, F ′} = E − 2E ◦ F + {F,E, F } and {E′, F,E′} =
F − 2E ◦ F + {E,F,E} we then get

{F,E, F } = E ◦ F = {E,F,E}
or, equivalently,

F ◦ (E ◦ F) = E ◦ F = E ◦ (E ◦ F).

The statistical predictability means that {F,E, F } = sF with s = P(E|F). Hence

E ◦ (E ◦ F) = E ◦ F = {F,E, F } = sF

and

sE ◦ F = E ◦ (sF ) = E ◦ (E ◦ F) = E ◦ F

which implies that either s = 1 or E ◦ F = 0. In the latter case, we have F � E′ and
s = P(E|F) = 0. �

Theorem 6.2 means that, in a JBW algebra, non-trivial cases of statistical predictability
are possible only with events that are not compatible.

7. The quantum-mechanical Hilbert space model

Note that the self-adjoint part of any W*-algebra [15] (von Neumann algebra) and the self-
adjoint bounded linear operators on a complex Hilbert space as well as on a real or quaternionic
Hilbert space form JBW algebras with the Jordan product X ◦ Y := (XY + YX)/2. In these
cases {X, Y,X} = XYX, and an event E is statistically predictable under the event sequence
F1, . . . , Fn if and only ifF1F2 . . . FnEFn . . . F2F1 = sF1F2 . . . Fn . . . F2F1 with a real number
s. Then P(E|F1, . . . , Fn) = s. Thus, in these cases, definition 4.1 coincides with the concept
of statistical predictability introduced in [13] where it was derived from an investigation of the
Lüders–von Neumann quantum measurement process, but where the interpretation as state-
independent conditional probability could not be provided.

However, on the one hand, the type I2 cases must be excluded here, and on the other hand,
there are exceptional [10] JBW algebras (not of type I2) that do not have a representation on
any Hilbert space and cannot be embedded in the self-adjoint part of any W ∗-algebra.

With the standard model of quantum mechanics, the events are identified with the
orthogonal projections on a complex Hilbert space H, i.e. with the idempotent self-adjoint
bounded linear operators onH. They form a UCP space unless dimH = 2. We assume dimH > 2.
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We already know that P(E|F) exists if F is an atom. With the standard model of quantum
mechanics, the atoms are the orthogonal projections on one-dimensional linear subspaces of
the Hilbert space H. Now let F be an atom and ξ be a vector in FH with ‖ξ‖ = 1. Then

FEF = |ξ〉〈ξ |Eξ〉〈ξ | = 〈ξ |Eξ〉F and P(E|F) = 〈ξ |Eξ〉.
If E is a projection on a one-dimensional space as well and η ∈ EH with ‖η‖ = 1, then

P(E|F) = 〈ξ |η〉〈η|ξ〉 = |〈η|ξ〉|2.
Thus, we arrive at an expression familiar from quantum mechanics where the square of
the absolute value of the inner product of two Hilbert space vectors carrying norm one is
interpreted as a probability, but we are able to better understand the background of this
statistical interpretation of quantum mechanics since knowing that the above expression is
a state-independent conditional probability.

Non-trivial examples of the statistical predictability (i.e. 0 < P(E|F) < 1) can now easily
be found by a proper selection of H, ξ and η. These examples involve atoms. Can P(E|F) also
exist and be different from 0,1 if F is not an atom? It can, which is shown by the two matrices

E =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 and F = 1

2




1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1




that represent orthogonal projections in the four-dimensional unitary space. SinceEFE = 1
2E,

we get P(F |E) = 1
2 .

Now let E and F be any two orthogonal projections on H. Using (∗) and the identity
{X, Y,X} = XYX, we get that E and F are compatible (definition 5.1) if and only if
E = FEF + F ′EF ′ and F = EFE + E′FE′, which is equivalent to EF = FE, i.e. E
and F commute. The probabilistically defined compatibility thus becomes identical with the
algebraically defined concept of compatibility in the quantum-mechanical Hilbert space model.

8. Quantum interference

Let D,E,F be three events in J(A), where A is the self-adjoint part of a W*-algebra without
type I2 direct summand. Let D be an atom, ρD the unique state with ρD(D) = 1, i.e.
ρD(G) = P(G|D), and ρ̂D the unique linear extension of ρD to a positive linear functional on
A. Assume that E 	= 0 and P(E|D) 	= 0. Then

P(F |D,E) = ρD(F |E) = ρ̂D(EFE)/ρ̂D(E).

We are now interested in the case where E is the sum of two orthogonal non-zero events E1

and E2:

P(F |D,E1 + E2) = 1

P(E1 + E2|D)
(ρ̂D(E1FE1) + ρ̂D(E2FE2)

+ρ̂D(E1FE2) + ρ̂D(E2FE1))

= P(F |D,E1)
P(E1|D)

P(E1 + E2|D)
+ P(F |D,E2)

P(E2|D)

P(E1 + E2|D)
+ 2

Re ρ̂D(E1FE2)

P(E1 + E2|D)
.

If neither E1 nor E2 is compatible with F (i.e. commutes with F ), the last term on the
right-hand side of this equation need not vanish (although E1 ⊥ E2) and, moreover, can be
negative as well as positive. This term is responsible for a certain oscillating deviation from
the sum of the first two terms on the right-hand side of the equation (this sum represents the
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classical case), i.e. the non-Boolean probabilities include wave-like interference phenomena
as observed with quantum-physical particles.

For instance, consider the two-slit experiment with a quantum-physical particle. Let D be
the event that the particle owns a certain fixed linear momentum, Ek(k = 1, 2) the events that
the particle passes through slit 1 and 2, respectively, andF the event that the particle is detected
at a certain fixed location x behind the screen with the two slits. Then these probabilities own
the following interpretations:

P(F |D,E1) is the probability that the particle will be detected at x if slit 1 is
open and slit 2 is closed.

P(F |D,E2) is the probability that the particle will be detected at x if slit 1 is
closed and slit 2 is open.

P(F |D,E1 + E2) is the probability that the particle will be detected at x if both slits
are open.

P(E1|D) is the probability that the particle flies through slit 1.
P(E2|D) is the probability that the particle flies through slit 2.
P(E1 + E2|D) is the probability that the particle flies through either slit 1 or slit

2 (which is identical with the probability that it does not hit the
screen).

We now assume that D,E1, E2 and F are orthogonal projections on one-dimensional
subspaces spanned by the vectors ξ, η1, η2 and ψ , respectively, in a complex Hilbert space
where η1 and η2 are orthogonal. Then

P(F |D,E1 + E2) = |〈ξ |η1〉〈η1|ψ〉 + 〈ξ |η2〉〈η2|ψ〉|2
|〈ξ |η1〉|2 + |〈ξ |η2〉|2 .

The right-hand side of this equation exactly reproduces the quantum-mechanical superposition
of state vectors, which is the standard explanation for interference phenomena.

9. Quantum measurement

That observations of nature behave as strangely as described by the UCP space model in
section 4 may appear unbelievable to common sense, but yet such observations have been
the daily business of quantum physicists for 80 years now. For instance, let �x0, �x1, . . . , �xn be
space axes and let λ0, λ1, . . . , λn be possible values of the spin of a quantum-physical particle
measured along these axes. Let E denote the particle property that its spin along axis �x0 is
λ0, and let Fk denote the particle property that its spin along axis �xk is λk . Measurements
of these particle properties then exactly reproduce the behaviour described in section 4. The
probability P(E|F1, . . . , Fn) depends on the angles between the axes �x0, �x1, . . . , �xn and on
λ0, λ1, . . . , λn. By a proper selection of �x0, �x1, . . . , �xn and λ0, λ1, . . . , λn, any value in the
unit interval can be achieved for this probability.

A quantum measurement can thus be understood as a mere observation of a certain property
of a physical system. Outcomes of quantum measurements are events, and P(E|F1, . . . , Fn)

is the probability of the outcome E with a future measurement testing E versus E′, after a
series of measurements (k = 1, . . . , n) testing Fk versus F ′

k has given the results Fk . This
probability depends on the results of the measurement series only; it does not depend on any
initial state of the physical system under consideration. If E is not statistically predictable
under F1, . . . , Fn, the knowledge of the outcomes of the measurement series is not sufficient
for any prediction concerning the occurrence of E or E′ with a future measurement.
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Quantum measurement phenomena that appear strange to common sense can thus be
perfectly explained by using non-Boolean probabilities, where it is not necessary to take into
account the measuring apparatus. However, this does not at all mean that everything becomes
quite simple now, since non-Boolean probabilities will remain difficult to understand with
common sense and may, as quantum mechanics itself, result in a conflict with the assumption
that an objective absolute physical reality exists.

The UCP space model does not use the wavefunctions or Hilbert space vectors ψ , which
therefore do not own any interpretation within this model and the role of which reduces to a
mathematical auxiliary tool available in special cases only. This may decrease the physical
and philosophical significance of the so-called collapse of the wavefunction with a quantum
measurement. Many misunderstandings of quantum theory result from the assumption that
ψ represents an actual state of the system under observation. With the UCP space model,
however, ψ itself does not have any meaning, but it is the projection on the linear span of ψ
which represents the observer’s information on the system that was achieved as the outcome of
a measurement. Considering EPR [8] experiments, this may remove the alleged contradiction
between Einstein’s locality principle and quantum mechanics, but not the conflict between
quantum mechanics and ‘realism’.

10. Conclusions

The UCP space model presented here is a non-Boolean extension of the classical probability
model. It reproduces typical quantum phenomena, but is easier to interpret than the quantum-
mechanical Hilbert space formalism, and it exhibits a particular phenomenon, the non-trivial
state-independent conditional probabilities or statistical predictability, which may provide
opportunities for a new understanding of quantum measurement.

The problems with the assumption that there is an objective absolute physical reality behind
quantum measurement now become problems of a non-Boolean extension of probability theory,
or of a non-Boolean logic since the state-independent conditional probabilities depend only
on the underlying logico-algebraic structure of the events/propositions and may therefore be
regarded more as a logical than a stochastic phenomenon. These probabilities themselves have
an objective character and thus differ from classical probabilities, the origin of which always
lies in the observer’s subjective lack of information.

We have encountered two cases where the quantum-mechanical Hilbert-space model and
the UCP space model do not overlap each other. The first one does not cover the so-called
exceptional Jordan algebras. The second one does not include the two-dimensional Hilbert
spaces or type I2 algebras which play a major role in quantum mechanics since describing the
single quantum bit as well as the spin h̄/2. However, spin h̄/2 particles always own further
properties (e.g. linear momentum, mass, charge, etc); the combined consideration of all particle
properties requires dimensions higher than two and is then covered by the UCP model.
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